home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
1%
| dexvert
| Corel 10 Texture (image/corel10Texture)
| ext
| Unsupported |
1%
| dexvert
| Croteam texture file (image/croteamTextureFile)
| ext
| Unsupported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| LaTeX document text
| default
| |
99%
| file
| LaTeX document, ASCII text, with very long lines (831)
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/281 LaTeX (Subdocument)
| default
| |
100%
| detectItEasy
| Format: plain text[LF]
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 64 6f 63 75 6d 65 6e | 74 73 74 79 6c 65 5b 31 |\documen|tstyle[1|
|00000010| 31 70 74 2c 66 6c 65 71 | 6e 2c 65 70 73 66 2c 63 |1pt,fleq|n,epsf,c|
|00000020| 61 6c 63 5d 7b 61 72 74 | 69 63 6c 65 7d 0a 5c 6d |alc]{art|icle}.\m|
|00000030| 61 72 6b 72 69 67 68 74 | 7b 43 68 61 70 74 65 72 |arkright|{Chapter|
|00000040| 20 33 3a 20 57 6f 72 6b | 73 68 65 65 74 20 31 7d | 3: Work|sheet 1}|
|00000050| 0a 5c 62 65 67 69 6e 7b | 64 6f 63 75 6d 65 6e 74 |.\begin{|document|
|00000060| 7d 0a 0a 5c 42 66 7b 5c | 53 74 61 72 5c 20 43 68 |}..\Bf{\|Star\ Ch|
|00000070| 61 70 74 65 72 20 33 3a | 20 57 6f 72 6b 73 68 65 |apter 3:| Workshe|
|00000080| 65 74 20 31 20 20 5c 68 | 66 69 6c 6c 20 4a 61 63 |et 1 \h|fill Jac|
|00000090| 6b 20 4b 2e 20 43 6f 68 | 65 6e 20 5c 68 66 69 6c |k K. Coh|en \hfil|
|000000a0| 6c 20 43 6f 6c 6f 72 61 | 64 6f 20 53 63 68 6f 6f |l Colora|do Schoo|
|000000b0| 6c 20 6f 66 20 4d 69 6e | 65 73 7d 0a 0a 5c 76 73 |l of Min|es}..\vs|
|000000c0| 70 61 63 65 7b 31 2e 35 | 65 78 7d 0a 5c 43 62 7b |pace{1.5|ex}.\Cb{|
|000000d0| 54 68 65 20 44 65 72 69 | 76 61 74 69 76 65 20 61 |The Deri|vative a|
|000000e0| 73 20 74 68 65 20 53 6c | 6f 70 65 20 46 75 6e 63 |s the Sl|ope Func|
|000000f0| 74 69 6f 6e 7d 0a 5c 76 | 73 70 61 63 65 7b 31 2e |tion}.\v|space{1.|
|00000100| 35 65 78 7d 0a 0a 5c 6e | 6f 69 6e 64 65 6e 74 20 |5ex}..\n|oindent |
|00000110| 5c 42 66 7b 53 75 67 67 | 65 73 74 65 64 20 50 72 |\Bf{Sugg|ested Pr|
|00000120| 6f 62 6c 65 6d 73 7d 0a | 53 65 63 74 69 6f 6e 20 |oblems}.|Section |
|00000130| 33 2e 31 3a 20 36 2c 20 | 38 2c 20 31 34 2c 20 31 |3.1: 6, |8, 14, 1|
|00000140| 36 0a 0a 5c 76 73 70 61 | 63 65 7b 31 2e 35 65 78 |6..\vspa|ce{1.5ex|
|00000150| 7d 0a 0a 5c 62 65 67 69 | 6e 7b 65 6e 75 6d 65 72 |}..\begi|n{enumer|
|00000160| 61 74 65 7d 0a 5c 69 74 | 65 6d 20 57 65 20 61 6c |ate}.\it|em We al|
|00000170| 72 65 61 64 79 20 68 61 | 76 65 20 61 6e 20 61 72 |ready ha|ve an ar|
|00000180| 73 65 6e 61 6c 20 6f 66 | 20 6b 6e 6f 77 6c 65 64 |senal of| knowled|
|00000190| 67 65 20 61 62 6f 75 74 | 20 73 6c 6f 70 65 73 2e |ge about| slopes.|
|000001a0| 20 20 20 46 69 6c 6c 20 | 69 6e 20 74 68 65 20 62 | Fill |in the b|
|000001b0| 6c 61 6e 6b 73 20 77 69 | 74 68 20 77 6f 72 64 73 |lanks wi|th words|
|000001c0| 20 74 68 61 74 20 6d 61 | 6b 65 20 74 68 65 20 73 | that ma|ke the s|
|000001d0| 65 6e 74 65 6e 63 65 73 | 20 63 6f 72 72 65 63 74 |entences| correct|
|000001e0| 20 6d 61 74 68 65 6d 61 | 74 69 63 61 6c 20 73 74 | mathema|tical st|
|000001f0| 61 74 65 6d 65 6e 74 73 | 2e 20 20 20 54 68 65 20 |atements|. The |
|00000200| 73 6c 6f 70 65 20 6f 66 | 20 24 66 28 78 29 24 20 |slope of| $f(x)$ |
|00000210| 61 74 20 24 78 20 3d 20 | 61 24 20 69 73 20 74 68 |at $x = |a$ is th|
|00000220| 65 20 20 5c 5f 5c 5f 5c | 5f 5c 5f 5c 5f 5c 5f 5c |e \_\_\|_\_\_\_\|
|00000230| 5f 5c 5f 5c 5f 5c 5f 5c | 5f 5c 5f 5c 5f 5c 5f 5c |_\_\_\_\|_\_\_\_\|
|00000240| 5f 20 20 6f 66 20 74 68 | 65 20 66 75 6e 63 74 69 |_ of th|e functi|
|00000250| 6f 6e 20 61 74 20 24 78 | 20 3d 61 24 2e 20 20 20 |on at $x| =a$. |
|00000260| 49 66 20 24 66 28 78 29 | 24 20 69 73 20 69 6e 63 |If $f(x)|$ is inc|
|00000270| 72 65 61 73 69 6e 67 20 | 6f 6e 20 74 68 65 20 69 |reasing |on the i|
|00000280| 6e 74 65 72 76 61 6c 20 | 24 5b 78 5f 31 2c 20 78 |nterval |$[x_1, x|
|00000290| 5f 32 5d 24 20 74 68 65 | 6e 20 74 68 65 20 64 65 |_2]$ the|n the de|
|000002a0| 72 69 76 61 74 69 76 65 | 20 69 73 20 20 5c 5f 5c |rivative| is \_\|
|000002b0| 5f 5c 5f 5c 5f 5c 5f 5c | 5f 5c 5f 5c 5f 5c 5f 5c |_\_\_\_\|_\_\_\_\|
|000002c0| 5f 5c 5f 5c 5f 5c 5f 5c | 5f 5c 5f 20 20 20 6f 6e |_\_\_\_\|_\_ on|
|000002d0| 20 74 68 69 73 20 69 6e | 74 65 72 76 61 6c 2e 20 | this in|terval. |
|000002e0| 20 20 49 66 20 74 68 65 | 20 73 6c 6f 70 65 20 69 | If the| slope i|
|000002f0| 73 20 6e 65 67 61 74 69 | 76 65 20 6f 6e 20 61 6e |s negati|ve on an|
|00000300| 20 69 6e 74 65 72 76 61 | 6c 2c 20 74 68 65 6e 20 | interva|l, then |
|00000310| 74 68 65 20 66 75 6e 63 | 74 69 6f 6e 20 69 73 20 |the func|tion is |
|00000320| 20 5c 5f 5c 5f 5c 5f 5c | 5f 5c 5f 5c 5f 5c 5f 5c | \_\_\_\|_\_\_\_\|
|00000330| 5f 5c 5f 5c 5f 5c 5f 5c | 5f 5c 5f 5c 5f 5c 5f 20 |_\_\_\_\|_\_\_\_ |
|00000340| 20 74 68 65 72 65 2e 20 | 20 49 66 20 74 68 65 20 | there. | If the |
|00000350| 73 6c 6f 70 65 20 69 73 | 20 6e 65 67 61 74 69 76 |slope is| negativ|
|00000360| 65 20 6f 6e 20 24 5b 61 | 2c 20 63 29 24 20 61 6e |e on $[a|, c)$ an|
|00000370| 64 20 70 6f 73 69 74 69 | 76 65 20 6f 6e 20 24 28 |d positi|ve on $(|
|00000380| 63 2c 20 62 5d 24 20 61 | 6e 64 20 74 68 65 20 66 |c, b]$ a|nd the f|
|00000390| 75 6e 63 74 69 6f 6e 20 | 69 73 20 63 6f 6e 74 69 |unction |is conti|
|000003a0| 6e 75 6f 75 73 20 61 74 | 20 24 63 24 2c 20 74 68 |nuous at| $c$, th|
|000003b0| 65 6e 20 74 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |en the f|unction |
|000003c0| 68 61 73 20 61 20 20 5c | 5f 5c 5f 5c 5f 5c 5f 5c |has a \|_\_\_\_\|
|000003d0| 5f 5c 5f 5c 5f 5c 5f 5c | 5f 5c 5f 5c 5f 5c 5f 5c |_\_\_\_\|_\_\_\_\|
|000003e0| 5f 5c 5f 5c 5f 20 20 61 | 74 20 24 78 20 3d 20 63 |_\_\_ a|t $x = c|
|000003f0| 24 2e 20 20 20 20 49 66 | 20 74 68 65 20 64 65 72 |$. If| the der|
|00000400| 69 76 61 74 69 76 65 20 | 69 73 20 70 6f 73 69 74 |ivative |is posit|
|00000410| 69 76 65 20 6f 6e 20 24 | 5b 61 2c 20 63 29 24 20 |ive on $|[a, c)$ |
|00000420| 61 6e 64 20 6e 65 67 61 | 74 69 76 65 20 6f 6e 20 |and nega|tive on |
|00000430| 24 28 63 2c 20 62 5d 24 | 20 61 6e 64 20 74 68 65 |$(c, b]$| and the|
|00000440| 20 66 75 6e 63 74 69 6f | 6e 20 69 73 20 63 6f 6e | functio|n is con|
|00000450| 74 69 6e 75 6f 75 73 20 | 61 74 20 24 63 24 2c 20 |tinuous |at $c$, |
|00000460| 74 68 65 6e 20 74 68 65 | 20 66 75 6e 63 74 69 6f |then the| functio|
|00000470| 6e 20 68 61 73 20 61 20 | 20 5c 5f 5c 5f 5c 5f 5c |n has a | \_\_\_\|
|00000480| 5f 5c 5f 5c 5f 5c 5f 5c | 5f 5c 5f 5c 5f 5c 5f 5c |_\_\_\_\|_\_\_\_\|
|00000490| 5f 5c 5f 5c 5f 5c 5f 20 | 20 61 74 20 24 78 20 3d |_\_\_\_ | at $x =|
|000004a0| 20 63 24 2e 0a 0a 5c 69 | 74 65 6d 20 20 55 73 65 | c$...\i|tem Use|
|000004b0| 20 74 68 65 20 6e 6f 74 | 69 6f 6e 73 20 72 65 76 | the not|ions rev|
|000004c0| 69 65 77 65 64 20 69 6e | 20 74 68 65 20 70 72 65 |iewed in| the pre|
|000004d0| 76 69 6f 75 73 20 71 75 | 65 73 74 69 6f 6e 20 61 |vious qu|estion a|
|000004e0| 6e 64 20 74 68 65 20 66 | 61 63 74 20 74 68 61 74 |nd the f|act that|
|000004f0| 20 74 68 65 20 64 65 72 | 69 76 61 74 69 76 65 20 | the der|ivative |
|00000500| 6f 66 20 24 79 20 3d 20 | 61 78 5e 33 20 2b 20 62 |of $y = |ax^3 + b|
|00000510| 78 5e 32 20 2b 20 63 78 | 20 2b 20 64 24 20 69 73 |x^2 + cx| + d$ is|
|00000520| 20 24 5c 66 72 61 63 7b | 64 79 7d 7b 64 78 7d 20 | $\frac{|dy}{dx} |
|00000530| 3d 20 33 61 78 5e 32 20 | 2b 20 32 62 78 20 2b 20 |= 3ax^2 |+ 2bx + |
|00000540| 63 24 20 28 74 68 69 73 | 20 69 73 20 70 72 6f 76 |c$ (this| is prov|
|00000550| 65 64 20 69 6e 20 73 65 | 63 74 69 6f 6e 20 33 2e |ed in se|ction 3.|
|00000560| 32 29 20 20 74 6f 20 66 | 69 6e 64 20 74 68 65 20 |2) to f|ind the |
|00000570| 24 78 24 2d 76 61 6c 75 | 65 73 20 74 68 61 74 20 |$x$-valu|es that |
|00000580| 67 69 76 65 20 74 68 65 | 20 6d 61 78 69 6d 75 6d |give the| maximum|
|00000590| 20 61 6e 64 20 6d 69 6e | 69 6d 75 6d 20 6f 66 20 | and min|imum of |
|000005a0| 24 66 28 78 29 20 3d 20 | 78 5e 33 20 2d 20 32 78 |$f(x) = |x^3 - 2x|
|000005b0| 20 2b 20 31 24 20 6f 6e | 20 74 68 65 20 63 6c 6f | + 1$ on| the clo|
|000005c0| 73 65 64 20 69 6e 74 65 | 72 76 61 6c 20 24 5b 2d |sed inte|rval $[-|
|000005d0| 31 2c 20 31 5d 24 2e 0a | 0a 5c 69 74 65 6d 20 53 |1, 1]$..|.\item S|
|000005e0| 61 6d 65 20 61 73 20 6c | 61 73 74 20 71 75 65 73 |ame as l|ast ques|
|000005f0| 74 69 6f 6e 2c 20 62 75 | 74 20 66 6f 72 20 74 68 |tion, bu|t for th|
|00000600| 65 20 63 6c 6f 73 65 64 | 20 69 6e 74 65 72 76 61 |e closed| interva|
|00000610| 6c 20 24 5b 2d 32 2c 20 | 32 5d 24 2e 0a 0a 5c 69 |l $[-2, |2]$...\i|
|00000620| 74 65 6d 20 4d 61 6b 65 | 20 61 20 68 61 6e 64 20 |tem Make| a hand |
|00000630| 73 6b 65 74 63 68 20 6f | 66 20 20 74 68 65 20 73 |sketch o|f the s|
|00000640| 6c 6f 70 65 20 66 75 6e | 63 74 69 6f 6e 20 6f 6e |lope fun|ction on|
|00000650| 20 24 5b 2d 32 2c 20 32 | 5d 24 20 66 6f 72 20 74 | $[-2, 2|]$ for t|
|00000660| 68 65 20 24 66 28 78 29 | 24 20 75 73 65 64 20 69 |he $f(x)|$ used i|
|00000670| 6e 20 74 68 65 20 70 72 | 65 76 69 6f 75 73 20 74 |n the pr|evious t|
|00000680| 77 6f 20 70 72 6f 62 6c | 65 6d 73 2e 0a 0a 5c 69 |wo probl|ems...\i|
|00000690| 74 65 6d 20 5c 53 74 61 | 72 5c 20 57 65 20 6b 6e |tem \Sta|r\ We kn|
|000006a0| 6f 77 20 74 68 61 74 20 | 74 68 65 20 65 78 61 63 |ow that |the exac|
|000006b0| 74 20 73 6c 6f 70 65 20 | 66 75 6e 63 74 69 6f 6e |t slope |function|
|000006c0| 20 6f 72 20 64 65 72 69 | 76 61 74 69 76 65 20 24 | or deri|vative $|
|000006d0| 66 27 28 78 29 24 20 6f | 66 20 61 20 67 69 76 65 |f'(x)$ o|f a give|
|000006e0| 6e 20 66 75 6e 63 74 69 | 6f 6e 20 24 66 28 78 29 |n functi|on $f(x)|
|000006f0| 24 20 69 6e 76 6f 6c 76 | 65 73 20 61 20 6c 69 6d |$ involv|es a lim|
|00000700| 69 74 20 70 72 6f 63 65 | 73 73 2e 20 20 48 6f 77 |it proce|ss. How|
|00000710| 65 76 65 72 2c 20 24 66 | 27 28 78 29 20 20 5c 61 |ever, $f|'(x) \a|
|00000720| 70 70 72 6f 78 20 20 20 | 5c 66 72 61 63 7b 66 28 |pprox |\frac{f(|
|00000730| 78 20 2b 20 68 29 20 2d | 20 66 28 78 29 7d 7b 68 |x + h) -| f(x)}{h|
|00000740| 7d 24 20 69 73 20 61 20 | 67 6f 6f 64 20 61 70 70 |}$ is a |good app|
|00000750| 72 6f 78 69 6d 61 74 69 | 6f 6e 20 77 68 65 6e 20 |roximati|on when |
|00000760| 24 68 24 20 69 73 20 60 | 60 73 6d 61 6c 6c 27 27 |$h$ is `|`small''|
|00000770| 2e 20 20 49 6e 20 74 68 | 69 73 20 65 78 65 72 63 |. In th|is exerc|
|00000780| 69 73 65 2c 20 77 65 20 | 77 61 6e 74 20 74 6f 20 |ise, we |want to |
|00000790| 69 6e 76 65 73 74 69 67 | 61 74 65 20 64 65 72 69 |investig|ate deri|
|000007a0| 76 61 74 69 76 65 73 20 | 6f 66 20 66 75 6e 63 74 |vatives |of funct|
|000007b0| 69 6f 6e 73 20 75 73 69 | 6e 67 20 74 68 69 73 20 |ions usi|ng this |
|000007c0| 69 6e 73 69 67 68 74 2e | 20 20 57 65 20 77 69 6c |insight.| We wil|
|000007d0| 6c 20 75 73 65 20 74 68 | 65 20 66 6f 6c 6c 6f 77 |l use th|e follow|
|000007e0| 69 6e 67 20 5c 4d 6d 61 | 5c 20 63 6f 64 65 3a 0a |ing \Mma|\ code:.|
|000007f0| 5c 62 65 67 69 6e 7b 76 | 65 72 62 61 74 69 6d 7d |\begin{v|erbatim}|
|00000800| 0a 66 5b 78 5f 5d 20 3a | 3d 20 78 5e 32 3b 20 0a |.f[x_] :|= x^2; .|
|00000810| 68 20 3d 20 2e 30 31 3b | 0a 61 20 3d 20 2d 32 3b |h = .01;|.a = -2;|
|00000820| 0a 62 20 3d 20 32 3b 0a | 66 73 5b 78 5f 5d 20 3a |.b = 2;.|fs[x_] :|
|00000830| 3d 20 28 66 5b 78 20 2b | 20 68 5d 20 2d 20 66 5b |= (f[x +| h] - f[|
|00000840| 78 5d 29 2f 68 0a 50 6c | 6f 74 5b 7b 66 5b 78 5d |x])/h.Pl|ot[{f[x]|
|00000850| 2c 20 66 73 5b 78 5d 7d | 2c 20 7b 78 2c 20 61 2c |, fs[x]}|, {x, a,|
|00000860| 20 62 7d 2c 0a 20 20 20 | 20 20 20 20 20 50 6c 6f | b},. | Plo|
|00000870| 74 53 74 79 6c 65 20 2d | 3e 20 7b 47 72 61 79 4c |tStyle -|> {GrayL|
|00000880| 65 76 65 6c 5b 30 5d 2c | 20 47 72 61 79 4c 65 76 |evel[0],| GrayLev|
|00000890| 65 6c 5b 30 2e 35 5d 7d | 0a 5d 0a 5c 65 6e 64 7b |el[0.5]}|.].\end{|
|000008a0| 76 65 72 62 61 74 69 6d | 7d 0a 52 75 6e 20 74 68 |verbatim|}.Run th|
|000008b0| 65 20 61 62 6f 76 65 20 | 63 6f 64 65 20 62 6c 6f |e above |code blo|
|000008c0| 63 6b 2e 20 20 44 6f 65 | 73 20 74 68 65 20 67 72 |ck. Doe|s the gr|
|000008d0| 61 70 68 20 6f 66 20 74 | 68 65 20 61 70 70 72 6f |aph of t|he appro|
|000008e0| 78 69 6d 61 74 65 20 73 | 6c 6f 70 65 20 66 75 6e |ximate s|lope fun|
|000008f0| 63 74 69 6f 6e 20 28 74 | 68 65 20 6c 69 67 68 74 |ction (t|he light|
|00000900| 65 72 20 67 72 61 70 68 | 29 20 61 67 72 65 65 20 |er graph|) agree |
|00000910| 66 61 69 72 6c 79 20 77 | 65 6c 6c 20 77 69 74 68 |fairly w|ell with|
|00000920| 20 74 68 65 20 6b 6e 6f | 77 6e 20 64 65 72 69 76 | the kno|wn deriv|
|00000930| 61 74 69 76 65 20 6f 66 | 20 74 68 65 20 67 69 76 |ative of| the giv|
|00000940| 65 6e 20 66 75 6e 63 74 | 69 6f 6e 3f 20 20 4a 75 |en funct|ion? Ju|
|00000950| 73 74 69 66 79 20 79 6f | 75 72 20 61 6e 73 77 65 |stify yo|ur answe|
|00000960| 72 20 75 73 69 6e 67 20 | 63 6f 6d 70 6c 65 74 65 |r using |complete|
|00000970| 20 73 65 6e 74 65 6e 63 | 65 73 2e 20 0a 0a 5c 69 | sentenc|es. ..\i|
|00000980| 74 65 6d 20 5c 53 74 61 | 72 5c 20 41 6c 74 65 72 |tem \Sta|r\ Alter|
|00000990| 20 74 68 65 20 61 62 6f | 76 65 20 63 6f 64 65 20 | the abo|ve code |
|000009a0| 62 6c 6f 63 6b 20 74 6f | 20 65 78 61 6d 69 6e 65 |block to| examine|
|000009b0| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 20 24 66 | the fun|ction $f|
|000009c0| 28 78 29 20 3d 20 5c 73 | 69 6e 20 78 24 20 28 77 |(x) = \s|in x$ (w|
|000009d0| 68 69 63 68 20 69 73 20 | 77 72 69 74 74 65 6e 20 |hich is |written |
|000009e0| 69 6e 20 5c 4d 6d 61 5c | 20 61 73 20 5c 54 74 7b |in \Mma\| as \Tt{|
|000009f0| 66 5b 78 5c 5f 5d 20 3a | 3d 20 53 69 6e 5b 78 5d |f[x\_] :|= Sin[x]|
|00000a00| 7d 29 20 6f 6e 20 74 68 | 65 20 69 6e 74 65 72 76 |}) on th|e interv|
|00000a10| 61 6c 20 24 5b 2d 5c 70 | 69 2c 20 5c 70 69 5d 24 |al $[-\p|i, \pi]$|
|00000a20| 20 28 77 72 69 74 74 65 | 6e 20 69 6e 20 5c 4d 6d | (writte|n in \Mm|
|00000a30| 61 5c 20 61 73 20 5c 54 | 74 7b 5c 7b 78 2c 20 2d |a\ as \T|t{\{x, -|
|00000a40| 50 69 2c 20 50 69 5c 7d | 7d 29 2e 20 20 54 68 65 |Pi, Pi\}|}). The|
|00000a50| 20 61 70 70 72 6f 78 69 | 6d 61 74 65 20 64 65 72 | approxi|mate der|
|00000a60| 69 76 61 74 69 76 65 20 | 66 75 6e 63 74 69 6f 6e |ivative |function|
|00000a70| 20 28 74 68 65 20 6c 69 | 67 68 74 65 72 20 67 72 | (the li|ghter gr|
|00000a80| 61 70 68 29 20 69 73 20 | 61 6e 20 6f 6c 64 20 66 |aph) is |an old f|
|00000a90| 72 69 65 6e 64 2d 2d 2d | 74 65 6c 6c 20 77 68 61 |riend---|tell wha|
|00000aa0| 74 20 66 75 6e 63 74 69 | 6f 6e 20 69 74 20 69 73 |t functi|on it is|
|00000ab0| 2e 20 20 43 68 65 63 6b | 20 75 70 20 61 20 62 69 |. Check| up a bi|
|00000ac0| 74 20 6f 6e 20 79 6f 75 | 72 20 61 6e 73 77 65 72 |t on you|r answer|
|00000ad0| 20 62 79 20 65 73 74 69 | 6d 61 74 69 6e 67 20 61 | by esti|mating a|
|00000ae0| 6e 20 61 70 70 72 6f 70 | 72 69 61 74 65 20 6e 75 |n approp|riate nu|
|00000af0| 6d 62 65 72 20 66 72 6f | 6d 20 74 68 65 20 67 72 |mber fro|m the gr|
|00000b00| 61 70 68 2e 20 20 43 6f | 6e 63 6c 75 73 69 6f 6e |aph. Co|nclusion|
|00000b10| 3a 20 64 6f 6c 6c 61 72 | 73 20 74 6f 20 64 6f 6e |: dollar|s to don|
|00000b20| 75 74 73 20 74 68 65 20 | 64 65 72 69 76 61 74 69 |uts the |derivati|
|00000b30| 76 65 20 6f 66 20 24 5c | 73 69 6e 20 78 24 20 69 |ve of $\|sin x$ i|
|00000b40| 73 20 5c 5f 5c 5f 5c 5f | 5c 5f 5c 5f 5c 5f 5c 5f |s \_\_\_|\_\_\_\_|
|00000b50| 5c 5f 2e 0a 0a 5c 69 74 | 65 6d 20 5c 53 74 61 72 |\_...\it|em \Star|
|00000b60| 5c 20 57 68 69 63 68 20 | 69 73 20 74 68 65 20 66 |\ Which |is the f|
|00000b70| 75 6e 63 74 69 6f 6e 20 | 61 6e 64 20 77 68 69 63 |unction |and whic|
|00000b80| 68 20 69 73 20 74 68 65 | 20 64 65 72 69 76 61 74 |h is the| derivat|
|00000b90| 69 76 65 3f 20 20 50 72 | 6f 76 65 20 74 68 61 74 |ive? Pr|ove that|
|00000ba0| 20 69 74 20 63 6f 75 6c | 64 20 6e 6f 74 20 62 65 | it coul|d not be|
|00000bb0| 20 74 68 65 20 6f 74 68 | 65 72 20 77 61 79 20 72 | the oth|er way r|
|00000bc0| 6f 75 6e 64 20 61 6e 64 | 20 74 68 61 74 20 74 68 |ound and| that th|
|00000bd0| 65 20 77 61 79 20 79 6f | 75 20 70 69 63 6b 20 69 |e way yo|u pick i|
|00000be0| 73 20 63 6f 6e 73 69 73 | 74 65 6e 74 2e 20 20 20 |s consis|tent. |
|00000bf0| 4e 6f 74 65 20 74 68 61 | 74 20 69 74 20 69 73 20 |Note tha|t it is |
|00000c00| 5c 45 6d 7b 6e 6f 74 7d | 20 73 75 66 66 69 63 69 |\Em{not}| suffici|
|00000c10| 65 6e 74 20 74 6f 20 6a | 75 73 74 20 73 61 79 20 |ent to j|ust say |
|00000c20| 73 6f 6d 65 74 68 69 6e | 67 20 6c 69 6b 65 20 60 |somethin|g like `|
|00000c30| 60 77 68 65 6e 20 24 66 | 27 24 20 69 73 20 70 6f |`when $f|'$ is po|
|00000c40| 73 69 74 69 76 65 2c 20 | 24 66 24 20 69 73 20 69 |sitive, |$f$ is i|
|00000c50| 6e 63 72 65 61 73 69 6e | 67 27 27 20 73 69 6e 63 |ncreasin|g'' sinc|
|00000c60| 65 20 74 68 69 73 20 69 | 73 20 5c 45 6d 7b 61 6c |e this i|s \Em{al|
|00000c70| 77 61 79 73 7d 20 74 72 | 75 65 2e 20 20 20 59 6f |ways} tr|ue. Yo|
|00000c80| 75 20 68 61 76 65 20 74 | 6f 20 70 69 6e 20 73 75 |u have t|o pin su|
|00000c90| 63 68 20 61 73 73 65 72 | 74 69 6f 6e 73 20 74 6f |ch asser|tions to|
|00000ca0| 20 73 70 65 63 69 66 69 | 63 20 69 6e 74 65 72 76 | specifi|c interv|
|00000cb0| 61 6c 73 20 72 65 6c 65 | 76 61 6e 74 20 74 6f 20 |als rele|vant to |
|00000cc0| 74 68 65 20 67 69 76 65 | 6e 20 66 75 6e 63 74 69 |the give|n functi|
|00000cd0| 6f 6e 2e 0a 09 5c 62 65 | 67 69 6e 7b 65 6e 75 6d |on...\be|gin{enum|
|00000ce0| 65 72 61 74 65 7d 0a 09 | 5c 69 74 65 6d 20 20 53 |erate}..|\item S|
|00000cf0| 65 65 20 46 69 67 75 72 | 65 20 31 2e 0a 09 0a 09 |ee Figur|e 1.....|
|00000d00| 5c 62 65 67 69 6e 7b 66 | 69 67 75 72 65 7d 5b 68 |\begin{f|igure}[h|
|00000d10| 74 62 5d 0a 09 5c 65 70 | 73 66 79 73 69 7a 65 20 |tb]..\ep|sfysize |
|00000d20| 31 30 30 70 74 0a 09 5c | 63 65 6e 74 65 72 6c 69 |100pt..\|centerli|
|00000d30| 6e 65 7b 5c 65 70 73 66 | 66 69 6c 65 7b 77 73 31 |ne{\epsf|file{ws1|
|00000d40| 70 38 61 2e 65 70 73 7d | 7d 0a 09 5c 63 61 70 74 |p8a.eps}|}..\capt|
|00000d50| 69 6f 6e 7b 57 68 69 63 | 68 20 69 73 20 74 68 65 |ion{Whic|h is the|
|00000d60| 20 64 65 72 69 76 61 74 | 69 76 65 3f 7d 20 0a 09 | derivat|ive?} ..|
|00000d70| 5c 65 6e 64 7b 66 69 67 | 75 72 65 7d 0a 09 0a 09 |\end{fig|ure}....|
|00000d80| 5c 69 74 65 6d 20 53 65 | 65 20 46 69 67 75 72 65 |\item Se|e Figure|
|00000d90| 20 32 2e 0a 09 0a 09 5c | 62 65 67 69 6e 7b 66 69 | 2.....\|begin{fi|
|00000da0| 67 75 72 65 7d 5b 68 74 | 62 5d 0a 09 5c 65 70 73 |gure}[ht|b]..\eps|
|00000db0| 66 79 73 69 7a 65 20 31 | 30 30 70 74 0a 09 5c 63 |fysize 1|00pt..\c|
|00000dc0| 65 6e 74 65 72 6c 69 6e | 65 7b 5c 65 70 73 66 66 |enterlin|e{\epsff|
|00000dd0| 69 6c 65 7b 77 73 31 70 | 38 62 2e 65 70 73 7d 7d |ile{ws1p|8b.eps}}|
|00000de0| 0a 09 5c 63 61 70 74 69 | 6f 6e 7b 57 68 69 63 68 |..\capti|on{Which|
|00000df0| 20 69 73 20 74 68 65 20 | 64 65 72 69 76 61 74 69 | is the |derivati|
|00000e00| 76 65 3f 7d 20 0a 09 5c | 65 6e 64 7b 66 69 67 75 |ve?} ..\|end{figu|
|00000e10| 72 65 7d 0a 09 0a 09 5c | 69 74 65 6d 20 53 65 65 |re}....\|item See|
|00000e20| 20 46 69 67 75 72 65 20 | 33 2e 0a 09 0a 09 5c 62 | Figure |3.....\b|
|00000e30| 65 67 69 6e 7b 66 69 67 | 75 72 65 7d 5b 68 74 62 |egin{fig|ure}[htb|
|00000e40| 5d 0a 09 5c 65 70 73 66 | 79 73 69 7a 65 20 31 30 |]..\epsf|ysize 10|
|00000e50| 30 70 74 0a 09 5c 63 65 | 6e 74 65 72 6c 69 6e 65 |0pt..\ce|nterline|
|00000e60| 7b 5c 65 70 73 66 66 69 | 6c 65 7b 77 73 31 70 38 |{\epsffi|le{ws1p8|
|00000e70| 63 2e 65 70 73 7d 7d 0a | 09 5c 63 61 70 74 69 6f |c.eps}}.|.\captio|
|00000e80| 6e 7b 57 68 69 63 68 20 | 69 73 20 74 68 65 20 64 |n{Which |is the d|
|00000e90| 65 72 69 76 61 74 69 76 | 65 3f 7d 20 0a 09 5c 65 |erivativ|e?} ..\e|
|00000ea0| 6e 64 7b 66 69 67 75 72 | 65 7d 0a 09 0a 09 5c 65 |nd{figur|e}....\e|
|00000eb0| 6e 64 7b 65 6e 75 6d 65 | 72 61 74 65 7d 0a 0a 0a |nd{enume|rate}...|
|00000ec0| 5c 65 6e 64 7b 65 6e 75 | 6d 65 72 61 74 65 7d 0a |\end{enu|merate}.|
|00000ed0| 5c 65 6e 64 7b 64 6f 63 | 75 6d 65 6e 74 7d 0a |\end{doc|ument}. |
+--------+-------------------------+-------------------------+--------+--------+